
Hubs for VirtuosoNext™

Guillermina Cledou, José Proença

May 07, 2020

GETTING STARTED

1 Local installation 3
1.1 Requirements . 3
1.2 Installation steps . 3
1.3 Running the framework . 4

2 Using the tools 5
2.1 Server vs Lightweight mode . 5
2.2 Widgets . 5

3 Publications 17

4 Support 19

5 VirtuosoNext™ RTOS 21

6 How to use the tools 23

i

ii

Hubs for VirtuosoNext™

Hubs for VirtuosoNext™ is a web-based toolset to build, compose, depict, and analyse Timed Hub Automata. These
automata give semantics to Hubs, interacting entities on the Real-Time operating system VirtuosoNext™ developed
by Altreonic.

The toolset is developed in Scala, and uses ScalaJS to generate JavaScript. The toolset is developed as a sub-module
of ReoLive.

GETTING STARTED 1

http://www.altreonic.com/
https://github.com/ReoLanguage/ReoLive

Hubs for VirtuosoNext™

2 GETTING STARTED

CHAPTER

ONE

LOCAL INSTALLATION

VirtuosoNext toolset is developed in Scala, and uses ScalaJS to generate JavaScript. The toolset is developed as a
sub-module of ReoLive, and as such it requires ReoLive to run.

In addition it uses verifyta a command line tool from the Uppaal Real-Time Model Checker to verify properties
of Timed Hub Automata.

Before installing ReoLive and VirtuosoNext toolset see the full list of requirements below.

1.1 Requirements

• Scala building tools (SBT)

• Uppaal Real-Time Model Checker (optional)

• Java Runtime Environment (JRE)

1.2 Installation steps

Clone the ReoLive repository

$ git clone git@github.com:ReoLanguage/ReoLive.git
$ cd ReoLive

Pull the git submodules (which will include VirtuosoNext):

$ git submodule update --init

Use your favourite editor to edit the path to Uppaal executables in the global.properties configuration file. For
example, in Mac OS the typical path would be:

...
verifytaCmd = /Applications/uppaal/bin-Darwin/verifyta
...

Run the compilation script:

$./compile.sh

3

https://github.com/ReoLanguage/ReoLive
uppaal.org
https://www.scala-sbt.org
uppaal.org
https://www.java.com/en/download/
https://github.com/ReoLanguage/ReoLive

Hubs for VirtuosoNext™

1.3 Running the framework

After running the script compile.sh you can already access to the lightweight version of VirtuosoNext by opening

$ open site/hubs.html

and accessing the LW Hubs tab.

This lightweight version is a single javascript file autogenerated during compilation, and gives access to most of the
tools.

However, if you want to access the verification tool for Timed Hubs Automata, it requires access to your Uppaal
installation to run the models in Uppaal.

For this you need to run the server and access the VirtuosoNext tab, as follows.

Start the server using sbt

$ sbt server/run

Open the VirtusoNext toolset in a browser

$ open http://localhost:9000/hubs

4 Chapter 1. Local installation

CHAPTER

TWO

USING THE TOOLS

2.1 Server vs Lightweight mode

Fig. 1: Server (Full Hubs) vs Lightweight mode (LW Hubs)

While the toolset is developed in Scala, the code is compiled both into JVM binaries that are executed on a server
(Full Hubs), and into JavaScript using ScalaJS to produce an interactive web page (LW Hubs).

Both versions provide almost the same functionality, with the server additionally supporting the live verification of
properties through the Uppaal model checker. Everything else apart from the live verification is computed by the
browser using the generated JavaScript libraries.

2.2 Widgets

The toolset is organized in a set of widgets, each of them providing some functionality: edition, visualization, or
analysis.

By clicking in a widgets’ name it is possible to open or close such a widget. By default only some widgets are open.

All widgets, except the Examples widget use the hub specified in the Hub composer to carried on with their function-
ality.

Below we explain each widget in detail.

2.2.1 Hub Composer

It is the editor where users can specify hubs and tasks with different interaction semantics.

Hubs are specified by composing predefined hubs. We provide the list of primitive hubs below, followed by an
explanation on how to composed them.

Tasks are defined as a sequence of input or output ports, each of which can connect to the environment following the
sequence order, and using a specified interaction semantics. This is explained below in further detail.

Load the hub

5

_static/imgs/lw-vs-server.png
https://wwws.scala-js.org

Hubs for VirtuosoNext™

Fig. 2: Hub composer - Example code

Whenever a hub is specified, it is required to load the hub so that other widgets can analysed or visualised such a hub.
The hub can be loaded either by pressing shift + enter in the Hub Composer, or by clicking in the update icon on
the top right of the widget.

Primitive Hubs

Keyword for predefined hubs are listed in the following table. They are separated into original hubs in VirtusoNext™
and newly proposed hubs.

Original Hubs from VirtuosoNext™

Hub Keyword
Port port
Event event
DataEvent dataEvent
Semaphore semaphore
Resource resource
FIFO fifo
BlackBoard blackboard

Newly proposed hubs

Hub Keyword
Drain drain
Merger merger
Exclusive Router xor
Duplicator dupl
EventFull eventFull
DataEventFull dataEventFull
FIFOFull fifoFull
BlackBoardFull blackboardFull
Timer timer or timer(n) (n a positive integer, 0 when omitted)

6 Chapter 2. Using the tools

Hubs for VirtuosoNext™

Tasks

We can model tasks by using a predefined construct defined by the following grammar:

𝑡𝑘 := task<name>(port*) [every 𝑛]

mode := W | NW | n
port := mode name io

io := ! | ?

A task tries to communicate with the environment through its IO ports in the order established by the declaration and
following the specified interaction semantics.

These interaction semantics determine how a task waits on a request to succeed. These can be:

• waiting (W) – a task waits indefinitely until the request can be served

• non-waiting (NW) – either the requests is served without delay or the request fails

• waiting with time-out (WT) – waits either until the request is served or the specified time-out has expired.

Note: When using the every construct, the n must be higher or equal to the total amount of time the task can
wait to succeed on requests to its ports. For example, task<T1>(4 a!, 5 b!) every 10 is valid: 4+5 <=
10, while task<T1>(NW a!, 5 b!) every 3 is invalid: 5 > 3. As a consequence, these task cannot have a
waiting interaction (W).

Examples

The following code specifies a task named T1, with an input port a and an output port b.

task<T1>(W a?, 4 b!)

T1 first tries to read from the environment on port a waiting until it succeeds (W). When it succeeds, it tries to send
data through b, but it waits only 4 units of time, after this time whether it succeeds, it starts again, trying to read in a.
This semantics is given by the following THA.

Fig. 3: T1 semantics

Similarly, the following code specifies a task named T2, with an output port c. The task periodically tries to send
data through c every 5 units of time.

task<T2>(NW c!) every 5

Informally, the tasks tries to send data through c without waiting (NW). Whether it succeeds, it will wait 5 units of time
before starting again and trying to send data again. Formally, this semantics is given by the following THA.

2.2. Widgets 7

Hubs for VirtuosoNext™

Fig. 4: T2 semantics

Composition

Preo syntax

Composition using the Preo syntax is defined in a pointfree style, i.e., without naming the ports.

Composition of hubs and tasks can be sequential ; (outputs to inputs) or parallel * (appending inputs and outputs). A
type system guarantees that composition is correct.

The sequential composition requires that the number of outputs match the number of inputs in the sequence.

dupl ; fifo * event

This code specifies a duplicator hub where the first output connects to the input of a fifo hub, and the second
output connects to the input of an event hub.

More complex examples are available in the Examples widget online.

Preo syntax is extended as well with integers and booleans expression that can simplify the definition of complex hubs.

• hub ^n : n hubs of type hub, n a positive integer

• hub ! : as many hub such that their inputs and outputs connect correctly with another hubs that may connect in
sequence with hub

// for fifo hubs in parallel, composed in sequence with as many merger hubs needed (2
→˓in this case).
fifo^4 ; merger!

Note: Checkout Typed Connector Families and Their Semantics to read the theory behind Preo.

Treo syntax

In the Treo syntax hubs are specified by explicitly naming their port.

Furthermore, a new hub needs to be declare in a function like manner, by specifying their ports as parameters and
declaring whether each parameter is an input port ? or an output port !.

Composition is specified by declaring two hubs separeted with spaces. Composed hubs with shared port names will
synchronize over such ports.

// Main block (Preo Syntax)
// uses the hub myDupl specified in the code block
myDupl

(continues on next page)

8 Chapter 2. Using the tools

http://arcatools.org/hubs
http://jose.proenca.org/papers/connector-families/scp-cfam.pdf

Hubs for VirtuosoNext™

(continued from previous page)

{
// a hub using Treo syntax
myDupl(in?,out1!,out2!) =

dupl(in,o1,o2)
fifo(o1,out1)
event(o2,out2)

,

// an equivalent hub to myDupl, declared using Preo syntax
otherDupl = dupl ; fifo * event

}

More complex examples are available in the Examples widget online.

Specifying Hubs

THe main Hub is specified following the Preo syntax.

It is possible to declare various hubs, using the Preo syntax or Treo syntax, by declaring them in a function like manner
inside a block { } and referencing their names. Various hubs specified inside the block are separated by ,.

// Main block (Preo Syntax)
// uses the hub myDupl specified in the code block
timer(5) ; myDupl

{
// a hub using Treo syntax
myDupl(in?,out1!,out2!) =

dupl(in,o1,o2)
fifo(o1,out1)
event(o2,out2)

,

// an equivalent hub to myDupl, declared using Preo syntax
otherDupl = dupl ; fifo * event

,

// yet another hub equivalent to myDupl
yetAnotherDupl(i?, o1!, o2!) = otherDupl(i,o1,o2)

}

2.2.2 Circuit of the instance

This widget shows the architectural view of the hub specified in the Hub Composer, i.e. how primitive hubs and tasks
are connected to form a more complex hub.

Blue boxes with names represent tasks; white circles, if any, represent free input/output ports, i.e. ports that haven’t
been connected yet; and the rest of the nodes represent primitive hubs.

Arrows represent connections from output to input ports. Incoming and outgoing arrows from tasks are labeled with
the corresponding interaction semantics (W, NW, n - n a positive integer), the port’s name (only when using the Treo
syntax), and the type of port (input or output).

2.2. Widgets 9

http://arcatools.org/hubs

Hubs for VirtuosoNext™

Fig. 5: Hub circuit - Two task, t1 and t2, write in sequence to another task act

2.2.3 Hub Automaton of the instance

Fig. 6: (Timed) Hub Automaton - Example automaton for a hub timer(5)

This widget shows the simplified and serialized automaton of the hub specified in the Hub Composer.

A white circled location represents the initial state. All locations have a clock invariant, represented by a purple label
next to the location node, e.g. 𝑐𝑙 ≤ 5 (right location). Locations that do not show any clock invariant are locations
with trivially satisfied invariants, namely ⊤.

Transitions are labeled as followed:

• guard constraint, represented by a green label within angle brackets, e.g. ⟨⊤⟩

• clock constraint, if any, represented by a yellow label following the guard constraint, e.g. 𝑐𝑙 == 5 (bottom
transition)

• synchronizing ports, represented by blue labels, e.g. 𝑖𝑛 ↓, where ↓ represents an input port, and ↑ an output
port

• updates, if any, represented by a dark blue label, e.g. 𝑏𝑓 := 𝑖𝑛 (top transition)

• clock updates, if any, represented by a purple label, e.g. 𝑐𝑙 := 0 (top transition)

10 Chapter 2. Using the tools

Hubs for VirtuosoNext™

2.2.4 Examples

Fig. 7: Examples - A set of example hubs written in Preo and Treo syntax

This widget provides a set of example hubs, from primitive (e.g. Port and Port - 2 sources) to more complex ones (e.g.
Alternator and Sequencer).

Some examples are written in Preo syntax, such as Alternator (no variables), and others in Treo syntax, such as
Alternator.

By clicking on one of the examples, the corresponding code will be loaded in the Hub Composer and it will trigger
the update of other widgets that are opened.

2.2.5 Context Switch Analysis

Fig. 8: Context Switch Analysis - Minimum number of context switches for the trace p1,p2 from the hub example
from Circuit of the instance

This widget is an interactive panel to estimate the minimum number of context switches that a given trace in the current
hub will have if implemented in VirtuosoNext™.

A trace is a sequence of ports executions. In the example, the trace p1,p2 captures any trace in which p1 executes,
followed by the execution of port p2. In bot cases, p1 and p2 could execute synchronously with other ports.

It is possible to express n -sequential executions of the same port p as p^n. For example p^3, instead of p,p,p.

The trace can be specified in the text box next to the Pattern:. After which, it is required to load the trace by either
pressing shift + enter or clicking on the load icon on the top right of the box.

The widget will present the analysis below by stating the minimum number of context switches required, showing the
transitions that follow such a trace and the number of context switches per transition.

In the example, the trace p1,p2 requires in the best case 12 CS. Starting from the initial state 1 it transitions to state
2 by executing synchronously ports s2, get, and p1. Context switches occur when the execution changes from the
Kernel to some user task and vice-versa. Hubs execute in the Kernel task.

The following table summarises the possible sequence of CS between the Kernel task (executing the hub) and the user
tasks responsible for the synchronisation requests on ports s2, s1, get, p1, and p2. Each line represents 1 CS.

Notice that this is just an example. In reality, the order in which the kernel selects which task to execute next depends
on many factors, including the priority of the tasks, and other tasks that might be executing.

2.2. Widgets 11

Hubs for VirtuosoNext™

Control From Synchronisation Request Control To
1 Kernel Task with s2
2 Task with s2 s2 Kernel
3 Kernel Task with get
4 Task with get get Kernel
5 Kernel Task with p1
6 Task with p1 p1 Kernel
7 Kernel Task with s1
8 Task with s1 s1 Kernel
9 Kernel Task with get
10 Task with get get Kernel
11 Kernel Task with p2
12 Task with p2 p2 Kernel

For example, assuming the execution starts in the Kernel and there are not other tasks executing apart from the ones
mentioned. The Kernel selects the next task to execute (based on priority, etc.), in this case, the task responsible for
s2, and it takes 1 CS to change control to the such a task. This task then request to synchronise on port s2 and the
control goes back to the kernel (+1 CS).

Please notice that this widget is experimental.

2.2.6 Hub Automaton Analysis

Fig. 9: THA Analysis - example of structural properties for the automaton of the hub specified in the Hub Composer

This widget provides a summary of some structural properties of the timed hub automaton. Currently:

• Memory estimation - minimum memory size (bits) required in terms of data (assumes Integer variables) and
clock variables (Float variables), and in terms space needed to encode all states. Typically ⌈log2(𝑛)⌉ bits are
required to encode n states.

• Code size estimation - lines of code needed to encode the hub. Typically one line per: transition, state, variable,
guard, and assignment instruction. We consider assignment instruction to clock resets and assignments on
internal variables. Assignments from input to output ports are not consider as such.

• Always available ports - information about which ports of the hub are always ready to synchronise (up to some
restrictions). This is, ports that are ready to execute in any state of the hub, possibly up to some restrictions
imposed by guards, or synchronizations with other ports. For example in a data dataEvent hub, the input
port is always ready to synchronize without delay, and without restrictions imposed by the hub - transitions with
this port are single-action transitions and have a trivially satisfied guard.

12 Chapter 2. Using the tools

Hubs for VirtuosoNext™

2.2.7 Temporal Logic

Fig. 10: Temporal Logic - example of temporal properties for the automaton of the hub specified in the Hub Composer

This widget is the editor where the user can specify a list of timed behavioral properties, and (if using the server
version) verify them by relying on an instance of the Uppaal model checker running in our server (if using ArcaTools)
or the user’s computer (if using a local installation).

The grammar

Properties are given using a dynamic temporal logic proposed for Timed Hub Automata, which can be seen as a
subset of Uppaal Timed Computation Tree Logic (TCTL). This logic provides new operators to reason about the
behaviour of the systems focusing on actions, i.e., on ports that are fired rather than on locations as Uppaal TCTL.

TCTL properties are described using path formulas and state formulas. A path formula quantifies over paths of the
underlying transition system, while a state formula quantifies over a single state of such system.

A valid property consists of a path formula pf given by the following grammar

// path formula
pf ::= A[] sf | E[] sf | A<> sf | E<> sf | sf --> sf | every a --> b [after n]

// state formula
sf ::= a | a.doing | a.done

| a refiresAfter n | a refiresAfterOrAt n | a refiresBefore n | a
→˓refiresBeforeOrAt n |

| not sf
| sf and sf | sf imply sf | sf or sf
| ecc
| deadlock | nothing

// extended clock constraints
ecc ::= c # n | c - # n | ecc and ecc | a.t # n

// clock constraints operators
:: = < | <= | == | >= | >

where a and b are port names, c is a clock, and n is an Integer. A and E are the universal and existential quantifiers
over paths, while [] and <> are the universal and existential quantifiers over states. a.t is a special clock assigned
to port a that is set to 0 every time a fires – i.e., after a fired, this clock tracks the time since a last fired.

The following table describes intuitively when each formula is satisfied.

2.2. Widgets 13

http://arcatools.org/assets/hubs.html

Hubs for VirtuosoNext™

Construct Description
A[] sf Holds if in all possible paths, sf holds in all states
A<> sf Holds if in all possible paths, sf holds in at least one state
E[] sf Holds if in at least one path, sf holds in all states
E<> sf Holds if in at least one path, sf holds in at least one state
sf1 -->
sf2

Holds if whenever in every path where sf1 in some state s, sf2 is eventually satisfied along the
path from s. It is a shorthand for A[] (sf1 imply (A <> sf2)). Notice that neither
Uppaal nor our logic allows nested path formulas.

every
a --> b
after n

Holds if, whenever a fires, b will fire before a fires again, but after 5 or more units of time since a
fired.

a Holds at the time instance when port a fires.
a.doing Holds if a was the last port to be fired.
a.done Holds if a has fired at least once.
a
refiresAfter
n

Holds in states where, if a fired, then it cannot refire until more than n units of time passed.

a
refiresAfterOrAt
n

Holds in states where, if a fired, then it cannot refire until n or more units of time passed.

a
refiresBefore
n

Holds in states where a fires before less than n units of time passed since the beginning or since it
last fired.

a
refiresBeforeOrAt
n

Holds in states where a fires before n or less units of time passed since the beginning or since it last
fired.

not sf Holds in states where sf is not satisfied
sf1 and
sf2

Holds in states where both sf1 and sf2 are satisfied

sf1 or
sf2

Holds in states where sf1 or sf2 are satisfied

sf1
imply
sf2

Holds in states where if sf1 is satisfied, sf2 is satisfied as well. In states where sf1 is not
satisfied the property is trivially satisfied.

nothing Holds in states where no action has fired previously.
deadlock Holds in states where there are no outgoing action transitions neither from the state itself or any of

its delay successors.
c # n Holds in states where the current value of clock c, 𝜂(𝑐), satisfies the condition 𝜂(𝑐) # 𝑛.
c1 - c2
n

Holds in states where the current value of clock c1 and c2, satisfy the condition 𝜂(𝑐1)−𝜂(𝑐2) # 𝑛.

ecc1 and
ecc1

Holds in states where both clock constraints ecc1 and ecc2 are satisfied.

a.t # n Holds in states where the current value of clock a.t satisfies the condition 𝜂(𝑎.𝑡) # 𝑛.

14 Chapter 2. Using the tools

Hubs for VirtuosoNext™

The widget

To analyse the properties the user needs to load the properties by either pressing shift + enter or by clicking on
the load icon on the top right of the widget.

Even when using the lightweight version, the widget provides the necessary information to verify each property using
Uppaal manually.

After loading the properties, a new box appears showing the results. In particular, for each property, the result box
shows:

• whether it is satisfied (X or). This is shown only when using the server version (Full Hubs)

• its encoding using Uppaal’s temporal logic syntax. This is accessed by clicking on the expand button . Notice
that a property using our logic might be translated into several Uppaal properties. In this case, we show for each
Uppaal property whether it is satisfied - all should be satisfied in order to satisfy the original property.

• the Uppaal model needed to verify such a property and the property itself encoded using Uppaals’ syntax. This
can be downloaded by clicking on .

Fig. 11: Verification Information - Output result from loading the properties in the Temporal Logic box.

One Uppaal model per property

Depending on the kind of property, the model may need to incorporate more or less auxiliary variables in order to
support such a query. For example, a.done query requires to add a Boolean variable a_done to the model, initialized
as false and set to true whenever port a fires (never set to false again). Thus, each property has its own Uppaal model.

2.2. Widgets 15

Hubs for VirtuosoNext™

Manual verification using Uppaal

Although the user can automatically verify properties from the temporal logic widget, as explained above, it its possible
to download the model and import the model from the Uppaal model checker.

After running Uppaal, go to File -> Open System and select the .xml model downloaded either from the Uppaal
Model or Temporal Logic widget.

• Editor: shows the automaton of the hub and the structure of the Uppaal Project. Global declarations of variables,
clocks, and channels, can be found under Declarations, while local declarations can be found under Hub ->
Declarations. The initialization of the system is found under System declarations.

• Simulator: provides tools to simulate executions by selecting an enabled transition, while highlighting the
current location in the automaton, among other functionality.

• Verifier: provides functionality to write temporal properties and verify them. If the model imported was down-
loaded from the Temporal Logic widget, it will show the corresponding property for which the model was
created.

2.2.8 Uppaal Model

Fig. 12: Uppaal Model - Uppaal timed automaton model of the hub specified in the Hub Composer.

This widget provides the base Uppaal timed automaton model of the hub specified in the Hub Composer. By base we
mean that the model does not have any auxiliary variable or committed states in between states of the original model,
as is the case with Uppaal models generated in the Temporal Logic widget.

The model can be downloaded and imported into the Uppaal model checker for further analysis.

16 Chapter 2. Using the tools

CHAPTER

THREE

PUBLICATIONS

If you are interested in knowing more about the theory behind Timed Hub Automata, here are some key publications
that fuel the toolset.

2019

• Coordination of tasks on a Real-Time OS
Guillermina Cledou, José Proença, Bernhard H.C. Sputh, and Eric Verhulst,
Coordination

17

http://jose.proenca.org/papers/virtuoso-reo.pdf

Hubs for VirtuosoNext™

18 Chapter 3. Publications

CHAPTER

FOUR

SUPPORT

We are available for support in case you encounter any issue or have trouble using the tools.

• Guillermina Cledou: mgc at inesctec dot pt

• José Proença: pro at isep dot ipp dot pt

19

Hubs for VirtuosoNext™

20 Chapter 4. Support

CHAPTER

FIVE

VIRTUOSONEXT™ RTOS

VirtuosoNext™ is a distributed real-time operating system (RTOS) featuring a generic programming model dubbed
Interacting Entities, called Hubs. Hubs act as synchronisation and communication mechanisms between the applica-
tion tasks and implement the services provided by the kernel as a kind of Guarded Protected Action with a well defined
semantics.

21

http://www.altreonic.com/content/product-overview

Hubs for VirtuosoNext™

22 Chapter 5. VirtuosoNext™ RTOS

CHAPTER

SIX

HOW TO USE THE TOOLS

Hubs for VirtuosoNext™ toolset is available to use online or to download and install locally following the installation
guidelines.

Either case, read Using the tools to learn more about how to use the tools.

23

http://arcatools.org/#hubs

	Local installation
	Requirements
	Installation steps
	Running the framework

	Using the tools
	Server vs Lightweight mode
	Widgets

	Publications
	Support
	VirtuosoNext™ RTOS
	How to use the tools

